
Stream Processing in an
Actor-Oriented Database System

Philip Bernstein
Microsoft Research

BIRTE 2019
August 26, 2019

Outline

 Most new interactive services are stateful, object-oriented
middle-tier applications

 They need database technology, but are currently poorly served

 One such technology is stream processing

2

Interactive Application Services

3

Clients
Internet of
Things (IoT)

Multi-Player
Games

Social
Networking

Mobile
Apps

Telemetry

What’s a Middle Tier?

Frontends
Storage

Middle Tier

4

Clients

Stateful Object-Oriented Applications

 These applications manage state, usually represented as objects

 Naturally object-oriented, modeling real-world objects

 Examples of objects

 Gaming: players, games, grid positions, lobbies, player profiles,
leaderboards, in-game money, and weapon caches

 Social: chat rooms, messages, photos, and news items

 IoT: thermometers, motion detectors, cameras, GPS receivers,
and virtual sensors built on top (room presence, traffic jams)

5

Scenario

 Player logs into game console

 Console connects to cloud service, creating Player object

 Player object connects to a Game-Lobby object

 Game-Lobby runs an algorithm to group players into a Game
 Returns a reference to the Game object to all players

 Game object reports activities as a stream of events

 Game object writes to Scoreboard object
 At the end, it might update the Leaderboard

6

Stateful Micro-Services

 Many micro-services execute stateful middle-tier OO apps

 Data ingestion – event streams for real-time analytics

 Workflow – manage long-running multi-step jobs

 Smart contracts – workflows on blockchains

 Example – merge event streams from 100K servers

 Index them, store them in batches, run continuous queries,
publish query results to dashboards

 These services aren’t naturally object-oriented

 But for scalability, OO is a good design approach
7

Application Properties

 Objects are active for minutes to days, sometimes forever

 App manages millions of objects, streams, images, and videos, and
huge knowledge graphs

 App does heavy computation: complex actions, image rendering,
continuous queries, computations over graphs, …

 App does heavy communication: high-bandwidth message streams

8

System Properties

 Service is highly available

 Compute, storage, and communications must scale out independently

 That’s why the three-tier architecture is popular

9

Actor Systems

 Many of these apps are implemented using an actor system

 Greatly simplifies distributed programming

 Actors are objects that …

 Communicate only via asynchronous message-passing

 Messages are queued in the recipient's mailbox

 No shared-memory state between actors

 Process one message at a time

 No multi-threaded execution inside an actor
10

Orleans Actor Programming Framework

 Orleans is an open-source actor framework in C#
 https://dotnet.github.io/orleans/

 Invented the Virtual Actor model

 Like virtual memory, actors are loaded and activated on demand

 Deactivated after an idle period

 Supports scalability by load-balancing objects across servers

 Supports fault-tolerance by automatically reactivating failed objects

11

Orleans Programming Model

 Object is fully-encapsulated and single-threaded

 Each class has a key, whose values identify instances

 Game, player, phone, device, scoreboard, input stream, workflow, etc.

 Asynchronous RPC

 Key.Method(params) returns a “task” (i.e., a promise)

 “Await Task” blocks the caller until the task completes

 .NET has language support for this (Async-Await)

12

Calling an Actor’s Method

13

Client PlayerA Storage
PlayerKeyA.Move()

Orleans
Runtime

Lookup PlayerA’s location
If (PlayerA is active)

{ invoke PlayerA.Move }
Placement

Strategy
else { activate PlayerA on some server S;

invoke PlayerA’s constructor;
invoke PlayerA.Move at S }

Orleans magic: A fault-tolerant DHT maps object-ID to server-ID

Fault Tolerance

 Object can save state at any
time, e.g., to storage

 Runtime automates
fault-tolerance

14

public class Account
{
int balance;

Task async Withdraw(int x)
{ if (balance >= x)

{ balance = balance – x;
Save State;
return 1; }

else return 0;
}

}

Good news / Bad news

 Good news

 The virtual actor model automates scalability and fault tolerance

 Bad news

 App is responsible for managing its state

 Let’s treat the app as a database of objects

 Offer standard database abstractions

15

Actor-Oriented Database System (AODB)

 Indexes

 Transactions

 Queries

 Views

 Triggers

 Replication

 Geo-distribution

 Streams

16

Frontend
Clients

Transactions

Streams

Geo-
distribution

Indexing

Actor
Middle-Tier

AODB
Plug-ins

Cloud
Storage

Examples

 Transaction – Player X buys a kryptonite shield

 Index – Get all players in Los Angeles

 Query – Get all players in L.A. who are playing Halo with  8 other players

 View – the number of active instances of each game

 Trigger – notify a chess player when it’s his/her move

 Stream – Watch player actions, looking cheaters

17

Actor-Oriented Database (AODB)

Unique Requirement

 Storage independent, using cloud storage

 In particular, stream-transport independent. It should work with

 Azure Event Hubs

 Azure ServiceBus

 Azure Queues

 Apache Kafka

 TCP/IP messages

 . . .

18

AODB Streams Requirements

 Allow fine-grained free-form compute over stream data

 Allow stream topology and processing logic to change dynamically

 Example – A stream per online user
 Users come and go

 Their interests change – weather location, sports, flight status, stock

 … based on external context not on events in the stream

 Example – detect new ways of cheating in an online game
 Re-route certain events to a cheat detector object

 Change the logic of the cheat detector

19

And of course the system must be …

 Scalable

 High throughput

 Low latency

 Highly available

20

Conceptual System View

21

Data
Sources

Devices

Sensors Stateful Processing Agents

Output

Streams

Actor Model Clusters Storage Writes

 Events relevant to an object are sent to that object

 E.g., a player in a game, or a room in an IoT system

 The object decides when to write to storage

 Alternative model: cluster writes based on event type

 Many event types are relevant to the same object

 Too many writes

 Writes to the object conflict

22

Orleans Streams

 A highly customizable pub-sub system
 Defines the programming model and its implementation

 Any Orleans object can be a stream producer or consumer

 The queue manager is a plug-in (wrapped by a Queue Adaptor)

 A consumer can:
 run any .NET code: C#, Trill, .NET Reactive Extensions, state machine, …

 call other objects, e.g., for notification

 Flexible, dynamic stream topology

23

Programming model

1. Object calls stream provider to get a stream based on GUID+Namespace
(a local call)

2. To consume from a stream, an Object subscribes to it, which returns a
subscription handle

3. Producer calls Stream.OnNext to send an event to all subscribers

24

Consumer
object

2. Stream.Subscribe

Stream

3. Stream.OnNext Producer
object

Stream
provider

1. GetStream

Stream Provider

 Can be a lightweight driver

 Can contain substantial logic

 Split a firehose into fine-grained streams

 Aggregate fine-grained streams into a firehose

 Replicate events into many streams

25

Virtual Streams

 Like a virtual actor, a stream always exists

 It is activated on demand by sending events to it or subscribing to it

 Each subscription is durable
 An object (subscriber) must explicitly Unsubscribe

 If an object deactivates and later is reactivated, it must invoke
SubscriptionHandle.Resume()to reattach event-processing logic

 It typically does this in its OnActivate method

 If it didn’t persist its subscription handles, then it can get them by calling
GetAllSubscriptionHandles

26

Event Ordering

 Stream provider determines the event order between producer and
consumer

 A producer can pass a StreamSequenceToken to the OnNext call

 The StreamSequenceToken is delivered with the event so the consumer can
reconstruct event order

 An object can checkpoint its state with its StreamSequenceToken

 At recovery, the object loads its state and passes the StreamSequenceToken
to Subscribe to identify the first event it should receive

 Only some stream providers support this “rewinding”

27

How - Components

 Orleans server process instantiates Pulling Agents
that get messages from the queues

 Each Pulling Agent loads a Stream Provider for
the specified queuing service

 Generic provider code is abstracted into Queue
Adaptors

 Queue Balancer balances work across pulling
agents and servers to prevent bottlenecks and
support elasticity. It’s customizable.

 Pub-Sub tracks all stream subscriptions, persists
them, and matches stream consumers with
stream producers.

Orleans Server

Stream Providers

Ev
e

n
t

H
u

b

Se
rv

ic
e

B
u

s

K
af

ka

TC
P

M
sg

s

…

Pulling Agents

Queue Balancer

Pub-SubPersistence

MessagingStreaming API

Application Code

Scheduler

28

Flow Control

 Agent delivers events to consumer via async RPC

 Sends a small batch and wait for completion before sending the next batch

 A per-agent cache buffers the event stream

 Decouples dequeuing events from delivering them to consumers

 As the cache fills, the agent slows the dequeuing rate, thereby applying
backpressure

29

Status

 Open source since Orleans V1, January 2015

 http://dotnet.github.io/orleans

 Used by Halo and other Microsoft games

 Many 3rd-party users

 Over 500 issues in Orleans GitHub mention streams

 Developed by Sergey Bykov, Jason Bragg, Alan Geller, Gabriel Kliot, Jim
Larus, Ravi Pandya, Jorgen Thelin

30

Other Database Features

 Transactions

 T. Eldeeb, P. Bernstein, “Transactions for Distributed Actors in the Cloud”, MSR-TR

 Indexing

 P.A. Bernstein, M. Dashti, T. Kiefer, D. Maier: Indexing in an Actor-Oriented Database.
CIDR 2017

 Geo-distribution

 P.A. Bernstein, S. Burckhardt, et al.: Geo-distribution of actor-based services.
PACMPL 1 (OOPSLA 2017)

31

Orleans

 http://dotnet.github.io/orleans

32

33

