
Stream Processing in an
Actor-Oriented Database System

Philip Bernstein
Microsoft Research

BIRTE 2019
August 26, 2019

Outline

 Most new interactive services are stateful, object-oriented
middle-tier applications

 They need database technology, but are currently poorly served

 One such technology is stream processing

2

Interactive Application Services

3

Clients
Internet of
Things (IoT)

Multi-Player
Games

Social
Networking

Mobile
Apps

Telemetry

What’s a Middle Tier?

Frontends
Storage

Middle Tier

4

Clients

Stateful Object-Oriented Applications

 These applications manage state, usually represented as objects

 Naturally object-oriented, modeling real-world objects

 Examples of objects

 Gaming: players, games, grid positions, lobbies, player profiles,
leaderboards, in-game money, and weapon caches

 Social: chat rooms, messages, photos, and news items

 IoT: thermometers, motion detectors, cameras, GPS receivers,
and virtual sensors built on top (room presence, traffic jams)

5

Scenario

 Player logs into game console

 Console connects to cloud service, creating Player object

 Player object connects to a Game-Lobby object

 Game-Lobby runs an algorithm to group players into a Game
 Returns a reference to the Game object to all players

 Game object reports activities as a stream of events

 Game object writes to Scoreboard object
 At the end, it might update the Leaderboard

6

Stateful Micro-Services

 Many micro-services execute stateful middle-tier OO apps

 Data ingestion – event streams for real-time analytics

 Workflow – manage long-running multi-step jobs

 Smart contracts – workflows on blockchains

 Example – merge event streams from 100K servers

 Index them, store them in batches, run continuous queries,
publish query results to dashboards

 These services aren’t naturally object-oriented

 But for scalability, OO is a good design approach
7

Application Properties

 Objects are active for minutes to days, sometimes forever

 App manages millions of objects, streams, images, and videos, and
huge knowledge graphs

 App does heavy computation: complex actions, image rendering,
continuous queries, computations over graphs, …

 App does heavy communication: high-bandwidth message streams

8

System Properties

 Service is highly available

 Compute, storage, and communications must scale out independently

 That’s why the three-tier architecture is popular

9

Actor Systems

 Many of these apps are implemented using an actor system

 Greatly simplifies distributed programming

 Actors are objects that …

 Communicate only via asynchronous message-passing

 Messages are queued in the recipient's mailbox

 No shared-memory state between actors

 Process one message at a time

 No multi-threaded execution inside an actor
10

Orleans Actor Programming Framework

 Orleans is an open-source actor framework in C#
 https://dotnet.github.io/orleans/

 Invented the Virtual Actor model

 Like virtual memory, actors are loaded and activated on demand

 Deactivated after an idle period

 Supports scalability by load-balancing objects across servers

 Supports fault-tolerance by automatically reactivating failed objects

11

Orleans Programming Model

 Object is fully-encapsulated and single-threaded

 Each class has a key, whose values identify instances

 Game, player, phone, device, scoreboard, input stream, workflow, etc.

 Asynchronous RPC

 Key.Method(params) returns a “task” (i.e., a promise)

 “Await Task” blocks the caller until the task completes

 .NET has language support for this (Async-Await)

12

Calling an Actor’s Method

13

Client PlayerA Storage
PlayerKeyA.Move()

Orleans
Runtime

Lookup PlayerA’s location
If (PlayerA is active)

{ invoke PlayerA.Move }
Placement

Strategy
else { activate PlayerA on some server S;

invoke PlayerA’s constructor;
invoke PlayerA.Move at S }

Orleans magic: A fault-tolerant DHT maps object-ID to server-ID

Fault Tolerance

 Object can save state at any
time, e.g., to storage

 Runtime automates
fault-tolerance

14

public class Account
{
int balance;

Task async Withdraw(int x)
{ if (balance >= x)

{ balance = balance – x;
Save State;
return 1; }

else return 0;
}

}

Good news / Bad news

 Good news

 The virtual actor model automates scalability and fault tolerance

 Bad news

 App is responsible for managing its state

 Let’s treat the app as a database of objects

 Offer standard database abstractions

15

Actor-Oriented Database System (AODB)

 Indexes

 Transactions

 Queries

 Views

 Triggers

 Replication

 Geo-distribution

 Streams

16

Frontend
Clients

Transactions

Streams

Geo-
distribution

Indexing

Actor
Middle-Tier

AODB
Plug-ins

Cloud
Storage

Examples

 Transaction – Player X buys a kryptonite shield

 Index – Get all players in Los Angeles

 Query – Get all players in L.A. who are playing Halo with 8 other players

 View – the number of active instances of each game

 Trigger – notify a chess player when it’s his/her move

 Stream – Watch player actions, looking cheaters

17

Actor-Oriented Database (AODB)

Unique Requirement

 Storage independent, using cloud storage

 In particular, stream-transport independent. It should work with

 Azure Event Hubs

 Azure ServiceBus

 Azure Queues

 Apache Kafka

 TCP/IP messages

 . . .

18

AODB Streams Requirements

 Allow fine-grained free-form compute over stream data

 Allow stream topology and processing logic to change dynamically

 Example – A stream per online user
 Users come and go

 Their interests change – weather location, sports, flight status, stock

 … based on external context not on events in the stream

 Example – detect new ways of cheating in an online game
 Re-route certain events to a cheat detector object

 Change the logic of the cheat detector

19

And of course the system must be …

 Scalable

 High throughput

 Low latency

 Highly available

20

Conceptual System View

21

Data
Sources

Devices

Sensors Stateful Processing Agents

Output

Streams

Actor Model Clusters Storage Writes

 Events relevant to an object are sent to that object

 E.g., a player in a game, or a room in an IoT system

 The object decides when to write to storage

 Alternative model: cluster writes based on event type

 Many event types are relevant to the same object

 Too many writes

 Writes to the object conflict

22

Orleans Streams

 A highly customizable pub-sub system
 Defines the programming model and its implementation

 Any Orleans object can be a stream producer or consumer

 The queue manager is a plug-in (wrapped by a Queue Adaptor)

 A consumer can:
 run any .NET code: C#, Trill, .NET Reactive Extensions, state machine, …

 call other objects, e.g., for notification

 Flexible, dynamic stream topology

23

Programming model

1. Object calls stream provider to get a stream based on GUID+Namespace
(a local call)

2. To consume from a stream, an Object subscribes to it, which returns a
subscription handle

3. Producer calls Stream.OnNext to send an event to all subscribers

24

Consumer
object

2. Stream.Subscribe

Stream

3. Stream.OnNext Producer
object

Stream
provider

1. GetStream

Stream Provider

 Can be a lightweight driver

 Can contain substantial logic

 Split a firehose into fine-grained streams

 Aggregate fine-grained streams into a firehose

 Replicate events into many streams

25

Virtual Streams

 Like a virtual actor, a stream always exists

 It is activated on demand by sending events to it or subscribing to it

 Each subscription is durable
 An object (subscriber) must explicitly Unsubscribe

 If an object deactivates and later is reactivated, it must invoke
SubscriptionHandle.Resume()to reattach event-processing logic

 It typically does this in its OnActivate method

 If it didn’t persist its subscription handles, then it can get them by calling
GetAllSubscriptionHandles

26

Event Ordering

 Stream provider determines the event order between producer and
consumer

 A producer can pass a StreamSequenceToken to the OnNext call

 The StreamSequenceToken is delivered with the event so the consumer can
reconstruct event order

 An object can checkpoint its state with its StreamSequenceToken

 At recovery, the object loads its state and passes the StreamSequenceToken
to Subscribe to identify the first event it should receive

 Only some stream providers support this “rewinding”

27

How - Components

 Orleans server process instantiates Pulling Agents
that get messages from the queues

 Each Pulling Agent loads a Stream Provider for
the specified queuing service

 Generic provider code is abstracted into Queue
Adaptors

 Queue Balancer balances work across pulling
agents and servers to prevent bottlenecks and
support elasticity. It’s customizable.

 Pub-Sub tracks all stream subscriptions, persists
them, and matches stream consumers with
stream producers.

Orleans Server

Stream Providers

Ev
e

n
t

H
u

b

Se
rv

ic
e

B
u

s

K
af

ka

TC
P

M
sg

s

…

Pulling Agents

Queue Balancer

Pub-SubPersistence

MessagingStreaming API

Application Code

Scheduler

28

Flow Control

 Agent delivers events to consumer via async RPC

 Sends a small batch and wait for completion before sending the next batch

 A per-agent cache buffers the event stream

 Decouples dequeuing events from delivering them to consumers

 As the cache fills, the agent slows the dequeuing rate, thereby applying
backpressure

29

Status

 Open source since Orleans V1, January 2015

 http://dotnet.github.io/orleans

 Used by Halo and other Microsoft games

 Many 3rd-party users

 Over 500 issues in Orleans GitHub mention streams

 Developed by Sergey Bykov, Jason Bragg, Alan Geller, Gabriel Kliot, Jim
Larus, Ravi Pandya, Jorgen Thelin

30

Other Database Features

 Transactions

 T. Eldeeb, P. Bernstein, “Transactions for Distributed Actors in the Cloud”, MSR-TR

 Indexing

 P.A. Bernstein, M. Dashti, T. Kiefer, D. Maier: Indexing in an Actor-Oriented Database.
CIDR 2017

 Geo-distribution

 P.A. Bernstein, S. Burckhardt, et al.: Geo-distribution of actor-based services.
PACMPL 1 (OOPSLA 2017)

31

Orleans

 http://dotnet.github.io/orleans

32

33

