Stream Processing in an
Actor-Oriented Database System

Philip Bernstein
Microsoft Research

BIRTE 2019
August 26, 2019

Outline

Most new interactive services are stateful, object-oriented
middle-tier applications

They need database technology, but are currently poorly served

One such technology is stream processing

Interactive Application Services

Internet of Multi-Player
Cllsnts Things (loT) Games

Internet

J U U
i Social Mobile w
Networking Apps

What’s a Middle Tier?

Clients
)

Frontends

Middle Tier

Storage

Stateful Object-Oriented Applications

These applications manage state, usually represented as objects
72 Naturally object-oriented, modeling real-world objects

Examples of objects

72 Gaming: players, games, grid positions, lobbies, player profiles,
leaderboards, in-game money, and weapon caches

? Social: chat rooms, messages, photos, and news items

A"

loT: thermometers, motion detectors, cameras, GPS receivers,
and virtual sensors built on top (room presence, traffic jams)

Scenario

Player logs into game console
Console connects to cloud service, creating Player object
Player object connects to a Game-Lobby object

Game-Lobby runs an algorithm to group players into a Game
?2 Returns a reference to the Game object to all players

Game object reports activities as a stream of events

Game object writes to Scoreboard object
? At the end, it might update the Leaderboard

Stateful Micro-Services

Many micro-services execute stateful middle-tier OO apps
? Data ingestion — event streams for real-time analytics

2 Workflow — manage long-running multi-step jobs

2 Smart contracts — workflows on blockchains

Example — merge event streams from 100K servers

7 Index them, store them in batches, run continuous queries,
publish query results to dashboards

These services aren’t naturally object-oriented
But for scalability, OO is a good design approach

Application Properties

Objects are active for minutes to days, sometimes forever

App manages millions of objects, streams, images, and videos, and
huge knowledge graphs

App does heavy computation: complex actions, image rendering,
continuous queries, computations over graphes, ...

App does heavy communication: high-bandwidth message streams

System Properties

Service is highly available
Compute, storage, and communications must scale out independently

That’s why the three-tier architecture is popular

Actor Systems

Many of these apps are implemented using an actor system

7 Greatly simplifies distributed programming

Actors are objects that ...

Communicate only via asynchronous message-passing

? Messages are queued in the recipient's mailbox
7 No shared-memory state between actors Orleans

Process one message at a time

2 No multi-threaded execution inside an actor
10

Orleans Actor Programming Framework

Orleans is an open-source actor framework in C# 0 Orleans
2 https://dotnet.github.io/orleans/

Invented the Virtual Actor model
? Like virtual memory, actors are loaded and activated on demand
Deactivated after an idle period

Supports scalability by load-balancing objects across servers

Supports fault-tolerance by automatically reactivating failed objects

11

Orleans Programming Model

Object is fully-encapsulated and single-threaded

Each class has a key, whose values identify instances

72 Game, player, phone, device, scoreboard, input stream, workflow, etc.

Asynchronous RPC

72 Key.Method(params) returns a “task” (i.e., a promise)
72 “Await Task” blocks the caller until the task completes
? .NET has language support for this (Async-Await)

12

Calling an Actor’s Method

PlayerKey,.Move()
| ciient S

I Orleans
YRuntime

Player, Storage
|

Lookup Player,’s location
If (Player, is active)
{invoke Player,.Move }
else {activate Player, on some server S; >
invoke Player,’s constructor;
invoke Player,.Move atS}

Placement

Strategy

Orleans magic: A fault-tolerant DHT maps object-ID to server-ID

13

Fault Tolerance

Object can save state at any
time, e.g., to storage

Runtime automates
fault-tolerance

public class Account

{

int balance;

Task async Withdraw(int x)

{ if (balance >= x)

{ balance = balance - x;
Save State;

return 1; }

else return 0;

¥

Good news / Bad news

Good news

? The virtual actor model automates scalability and fault tolerance

Bad news

2 App is responsible for managing its state

Let’s treat the app as a database of objects
Offer standard database abstractions

15

Actor-Oriented Database System (AODB)

Indexes
Transactions
Queries

Views

Triggers
Replication
Geo-distribution

Streams

Frontend
Clients

=
s
e @@
J,,Jﬂ
‘?:.:ll‘ @
Ce.
=
up
s
Actor
Middle-Tier

Streams

Transactions

Indexing

Geo-
distribution

AODB
Plug-ins

Cloud
Storage

16

Examples

Transaction — Player X buys a kryptonite shield

Index — Get all players in Los Angeles

Query — Get all players in L.A. who are playing Halo with > 8 other players
View — the number of active instances of each game

Trigger — notify a chess player when it’s his/her move

Stream — Watch player actions, looking cheaters

17

Actor-Oriented Database (AODB)

Unique Requirement

Storage independent, using cloud storage

In particular, stream-transport independent. It should work with
?A Azure Event Hubs

Azure ServiceBus

Azure Queues

Apache Kafka

TCP/IP messages

A 3 N NN

18

AODB Streams Requirements

Allow fine-grained free-form compute over stream data

Allow stream topology and processing logic to change dynamically

Example — A stream per online user
2 Users come and go

?2 Their interests change — weather location, sports, flight status, stock
7 ... based on external context not on events in the stream

Example — detect new ways of cheating in an online game
72 Re-route certain events to a cheat detector object
?” Change the logic of the cheat detector

19

And of course the system must be ...

Scalable
High throughput
Low latency

Highly available

20

Conceptual System View

Sensors

Devices P4l e

Data

Sources £

—> Streams

’ Stateful Processing Agents

21

Actor Model Clusters Storage WVrites

Events relevant to an object are sent to that object

?” E.g., aplayerinagame, oraroomin an loT system
The object decides when to write to storage

Alternative model: cluster writes based on event type
72 Many event types are relevant to the same object

2 Too many writes

72 \Writes to the object conflict

22

Orleans Streams

A highly customizable pub-sub system

? Defines the programming model and its implementation

2 Any Orleans object can be a stream producer or consumer

2 The queue manager is a plug-in (wrapped by a Queue Adaptor)

A consumer can:

2 run any .NET code: C#, Trill, .NET Reactive Extensions, state machine, ...
? call other objects, e.g., for notification

Flexible, dynamic stream topology

23

Programming model

Object calls stream provider to get a stream based on GUID+Namespace
(a local call)

To consume from a stream, an Object subscribes to it, which returns a
subscription handle

Producer calls stream.OnNext to send an event to all subscribers

Consumer

2. Stream.Subscribe .
object

Stream

Stream :
provider

1. GetStream

3. Stream.OnNext Producer
object

24

Stream Provider

Can be a lightweight driver

Can contain substantial logic
? Split a firehose into fine-grained streams
7 Aggregate fine-grained streams into a firehose

72 Replicate events into many streams

25

Virtual Streams

Like a virtual actor, a stream always exists
? lItis activated on demand by sending events to it or subscribing to it

Each subscription is durable
? An object (subscriber) must explicitly Unsubscribe

If an object deactivates and later is reactivated, it must invoke
SubscriptionHandle.Resume () to reattach event-processing logic

2 It typically does this in its OnActivate method

2 If it didn’t persist its subscription handles, then it can get them by calling
GetAllSubscriptionHandles

26

Event Ordering

Stream provider determines the event order between producer and
consumer

A producer can pass a StreamSequenceToken to the OnNext call

A The StreamSequenceToken is delivered with the event so the consumer can
reconstruct event order

An object can checkpoint its state with its StreamSequenceToken

7 Atrecovery, the object loads its state and passes the StreamSequenceToken
to Subscribe to identify the first event it should receive

A Only some stream providers support this “rewinding”

27

How - Components

Orleans Server

Orleans server process instantiates Pulling Agents
that get messages from the queues

Each Pulling Agent loads a Stream Provider for
the specified queuing service

? Generic provider code is abstracted into Queue
Adaptors

Queue Balancer balances work across pulling
agents and servers to prevent bottlenecks and
support elasticity. It’s customizable.

Pub-Sub tracks all stream subscriptions, persists
them, and matches stream consumers with
stream producers.

Streaming API Messaging

Persistence

Queue Balancer

Pulling Agents

Stream Providers

(7]
oTo)

-3

Flow Control

Agent delivers events to consumer via async RPC

7 Sends a small batch and wait for completion before sending the next batch

A per-agent cache buffers the event stream

2 Decouples dequeuing events from delivering them to consumers

2 As the cachefills, the agent slows the dequeuing rate, thereby applying
backpressure

29

Status

Open source since Orleans V1, January 2015
? http://dotnet.github.io/orleans

Used by Halo and other Microsoft games

Many 3™-party users

2 Over 500 issues in Orleans GitHub mention streams

Developed by Sergey Bykov, Jason Bragg, Alan Geller, Gabriel Kliot, Jim
Larus, Ravi Pandya, Jorgen Thelin

30

Other Database Features

Transactions

2 T. Eldeeb, P. Bernstein, “Transactions for Distributed Actors in the Cloud”, MSR-TR

Indexing

2 P.A. Bernstein, M. Dashti, T. Kiefer, D. Maier: Indexing in an Actor-Oriented Database.
CIDR 2017

Geo-distribution

2 P.A. Bernstein, S. Burckhardt, et al.: Geo-distribution of actor-based services.
PACMPL 1 (OOPSLA 2017)

Orleans

http://dotnet.github.io/orleans

32

33

== Microsoft

2014 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot
guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

