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Realtime Stream Processing
• In today’s world, data is of utmost value as it “arrives”


• Ability to process data in realtime is key to enabling several applications


• Stream processing has a very long history both inside and outside the 
database community


• New use-cases: surveillance, fraud detection, ad-serving, shopping cart 
analysis, online multiplayer games, live video streaming and distribution


• Processing large volumes of high-speed data in realtime is a challenge



Stream Processing Engines

• Allow users to define a computation pipeline 
that operates on a continuous stream of 
incoming data


• Architectures vary from a single core to 
shared-memory multicores to distributed 
shared-nothing


• Predominantly adopt the micro-batch 
architecture

Trill



Shared-Memory Parallelism

• Streaming pipelines generally have 
a bounded memory footprint


• Tremendous growth in memory 
sizes and core counts

• Treat each core in a multicore 
machine as an individual node


• Fail to exploit low-overhead 
shared-memory parallelism

Single shared-memory 
machine is “often” sufficient

Building block for distributed 
stream processing engines 



Ordered Stream Processing
Semantically equivalent to executing the stream 

computation on input stream serially one after another



Ordered Stream Processing

• Streams of events/tuples already 
have a notion of temporal ordering


• In many scenarios application 
logic depends on the event order


• For instance, timeout based 
sessions in a clickstream
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Ordered Stream Processing

• Streams of events/tuples already 
have a notion of temporal ordering


• In many scenarios application 
logic depends on the event order


• For instance, timeout based 
sessions in a clickstream

Semantically equivalent to executing the stream 
computation on input stream serially one after another

• Easy deployment with fault-
tolerance in the distributed setting 


• Active replication requires 
deterministic processing guarantee 



Overview
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filter

filter

average

sum

Data Parallelism
Pipeline Parallelism

Task Parallelism
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Value of Output

in → → on

Order of Outputs

. . . , o3, o2, o1
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Ordering Semantics

(on, Sn) = operate(Sn−1, in)

Stateless Stateful Partitionable 
Stateful

If i ≺ i′�, when can i and i′� be processed out-of-order?

Always Never ℙ(i) ≠ ℙ(i′�)



Stream Dataflow Graph
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Decouple operators by allowing inputs to be processed “asynchronously” 

Independently Executable
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Key Requirement

Each operator executable must individually 
provide the ordering guarantee when 

multiple workers are allotted

Clear separation of concerns between correctness and optimisation
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Reordering Outputs



Reordering Outputs

• Each input is assigned a “sequence number” based on their arrival


• Concurrent workers are operating on inputs to produce outputs


• We want to reorder and send them downstream in the input arrival order


• Output �  , even if produced earlier, can only be sent downstream after 
all of �  have been sent

oi+1
o1, o2, . . . , oi
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Lock-Based Reordering

7

6

4 1

• Each output already has a 
designated location on the 
buffer


• Decouple adding to buffer from 
sending downstream


• If a worker is already sending 
outputs downstream, delegate 
the work to it and return to do 
more useful work 
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Partitionable Stateful Operators
We have been working on group-by-aggregates for several decades, 

what’s new? 

If � , they can be processed out-of-order (or concurrently) only when 
�

i ≺ i′�

ℙ(i) ≠ ℙ(i′�)

Latency-Critical Ordering Requirement
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Shared Queue
• Each tuple has an associated partition


• All inputs are added into a single shared 
linearizable concurrent queue


• Algorithm


1. Dequeue input

2. Lock partition

3. Operate on input

4. Unlock partition

i4 : p2

i5 : p1

i6 : p3

Dequeue !i2 Dequeue !i3

Lock !p1

Operate on !i3

Unlock !p1

Operate on !i2

Lock !p1



Partitioned Queues
• Consider each partition as a stateful 

operator with its own queue 


• At most one worker can process a 
partition


• Most commonly used strategy in all 
stream processing engines


• Unnecessary blocking of outputs in 
the reordering buffer



Partitioned Queues
• Consider each partition as a stateful 

operator with its own queue 


• At most one worker can process a 
partition


• Most commonly used strategy in all 
stream processing engines


• Unnecessary blocking of outputs in 
the reordering buffer

i3 : p1
i1 : p1

i7 : p1
i5 : p2
i2 : p2

i6 : p3
i4 : p3



Partitioned Queues
• Consider each partition as a stateful 

operator with its own queue 


• At most one worker can process a 
partition


• Most commonly used strategy in all 
stream processing engines


• Unnecessary blocking of outputs in 
the reordering buffer

i3 : p1
i1 : p1

i7 : p1
i5 : p2
i2 : p2

i6 : p3
i4 : p3



Partitioned Queues
• Consider each partition as a stateful 

operator with its own queue 


• At most one worker can process a 
partition


• Most commonly used strategy in all 
stream processing engines


• Unnecessary blocking of outputs in 
the reordering buffer

i5 : p2
i2 : p2

o1o3o4o6o7



Partitioned Queues
• Consider each partition as a stateful 

operator with its own queue 


• At most one worker can process a 
partition


• Most commonly used strategy in all 
stream processing engines


• Unnecessary blocking of outputs in 
the reordering buffer

i5 : p2
i2 : p2

o1o3o4o6o7 o3o4o6o7



Solutions
Shared Queue Partitioned Queues

• Almost ordered processing


• Partition guarantee violation

• Partition guarantee


• Output blocking due to out-of-
order processing



Our Solution: Hybrid Strategy
Hybrid Strategy

• Master Queue: Contains only partition ids in the order of arrival


• Partition Queues: 


• One for each partition


• Each queue contains inputs belonging to a single partition


• Non-blocking strategy in the ordered setting!
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Reordering Buffer

Operator Implementations

Stateless Stateful Partitionable 
Stateful

MPMC Queue SPSC Queue MPMC 
Master Queue

SPSC Partition 
Queues

Reordering Buffer



Scheduling Runtime



Dynamic Scheduling

Monitor the state of the pipeline and 
operator characteristics to answer

Which operator should a worker next work on?



Parameters of Interest
Input queue size

Output queue size

Average selectivity i.e. Number of outputs per input 

Operator cost i.e. Time taken to process each input 

Number of workers allotted currently

Maximum allowed number of workers 

Ii

Oi
si

ci

wi

Mi



4 Heuristics 

Queue-Size Throttling 
(QST)

Last-In-Pipeline 
(LIP)

Estimated Time  
(ET)

Current Throughput 
(CT)



Queue-Size Throttling (QST)
• Apply pressure from ingress towards egress


• Focus on one operator at a time


• Each operator has an upper bound on output 
queue size 


• Normalize for selectivity


• Pick earliest operator in the pipeline with 
output queue size less than its threshold

csi =
i

∏
k=1

si



Queue-Size Throttling (QST)
• Apply pressure from ingress towards egress


• Focus on one operator at a time


• Each operator has an upper bound on output 
queue size 


• Normalize for selectivity


• Pick earliest operator in the pipeline with 
output queue size less than its threshold

csi =
i

∏
k=1

si

Ti =
C * csi

∑n
i=1 csi
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Last In Pipeline (LIP)
• Complementary to QST 


• Provide suction to pull tuples from ingress towards egress


• Prioritizes operators later in the pipeline 


• Operator is “schedulable” if it has


• Less than maximum allowed workers assigned 


• Minimum input queue size



Last In Pipeline (LIP)
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Estimated Time (ET)
• Priority-based: Compute a priority score 

for each operator and assign worker to the 
one with highest score


• Priority score is estimated time to process 
the current input queue to completion if an 
additional worker is assigned


• Intuition: Operator that will take more time 
to complete needs additional worker time 

pi =
Ii * ci

wi + 1
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Estimated Time (ET)

1 2 3 4 5

p1 = 40μs p2 = 10μs p3 = 15μs

x 1

p4 = 35μs

x 2

p5 = 33.3μs

pi =
Ii * ci

wi + 1



Current Throughput (CT)

• Schedule the operator with lowest throughput as 
it is likely to be bottleneck in the pipeline


• Normalize for selectivity


• Divide time into windows of size w, compute 
“effective” number of tuples processed by 
operator in w


• Choose operator with smallest �nw
i

nw
i =

Tw
i + (wi × s)
ci × csi−1
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Current Throughput (CT)

1 2 3 4 5

x 1

nw
i =

Tw
i + (wi × s)
ci × csi−1

nw
1 = 2M nw

3 = 5M nw
5 = 10M

x 1

nw
4 = 1M

x 1

nw
2 = 0.75M
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Evaluation

• Intel Xeon E5 Family 2698B v3 series


• Windows Server 2012 R2 Datacenter


• 16 Physical Cores


• Cache sizes: 32KB, 256KB & 40MB


• Steady-state throughput, latency

• TPCx-BB (Big Bench) Benchmark


• Modern Big Data Benchmark


• Q1-4, Q15 are streaming queries


• Eg. “Find top 30 products that 
are viewed together online” 

• Micro-benchmarks

Experimental Setup Workloads



Scheduling - Throughput



Scheduling - Latency



Scheduling - Analysis
• Even when total worker time distribution is same, the “throughput” is different for 

different heuristics!


• Heuristics that distribute workers across the operators 


• Establish a continuous pipelined flow 


• Yields better throughput and latency


• Heuristics that focus on a single operator at a time 


• Prioritizes data parallelism over pipeline parallelism


• Suffer from overheads of exploiting data parallelism in ordered setting



Partitioned Stateful Schemes
Load Imbalance Across Partitions

Hybrid strategy can afford finer partitions and hence better load balance!



Partitioned Stateful Schemes
Latency for different operator costs

Partitioned scheme blocks outputs, increasing latency!



Output Reordering Schemes
Lightweight Operators High Selectivity Operators

Non-blocking reordering scheme prevents unnecessary worker blocking



Conclusion



Conclusion
• Framework for parallelizing ordered stream computations on shared-

memory multicores


• Implementation of data-parallel operators in the ordered setting


• Reordering outputs without worker blocking


• Processing partitioned stateful operators in almost arrival order


• Proposed heuristics for dynamically scheduling stream operators and 
compared them empirically



Questions?


