
Scaling Ordered Stream Processing
on Shared-Memory Multicores
Guna Prasaad G. Ramalingam, Kaushik Rajan

26 Aug, 2019

Realtime Stream Processing
• In today’s world, data is of utmost value as it “arrives”

• Ability to process data in realtime is key to enabling several applications

• Stream processing has a very long history both inside and outside the
database community

• New use-cases: surveillance, fraud detection, ad-serving, shopping cart
analysis, online multiplayer games, live video streaming and distribution

• Processing large volumes of high-speed data in realtime is a challenge

Stream Processing Engines

• Allow users to define a computation pipeline
that operates on a continuous stream of
incoming data

• Architectures vary from a single core to
shared-memory multicores to distributed
shared-nothing

• Predominantly adopt the micro-batch
architecture

Trill

Shared-Memory Parallelism

• Streaming pipelines generally have
a bounded memory footprint

• Tremendous growth in memory
sizes and core counts

• Treat each core in a multicore
machine as an individual node

• Fail to exploit low-overhead
shared-memory parallelism

Single shared-memory
machine is “often” sufficient

Building block for distributed
stream processing engines

Ordered Stream Processing
Semantically equivalent to executing the stream

computation on input stream serially one after another

Ordered Stream Processing

• Streams of events/tuples already
have a notion of temporal ordering

• In many scenarios application
logic depends on the event order

• For instance, timeout based
sessions in a clickstream

Semantically equivalent to executing the stream
computation on input stream serially one after another

Ordered Stream Processing

• Streams of events/tuples already
have a notion of temporal ordering

• In many scenarios application
logic depends on the event order

• For instance, timeout based
sessions in a clickstream

Semantically equivalent to executing the stream
computation on input stream serially one after another

• Easy deployment with fault-
tolerance in the distributed setting

• Active replication requires
deterministic processing guarantee

Overview

Parallelism in a Stream Computation

map filter average-by-key

filter

filter

average

sum

Parallelism in a Stream Computation

map filter average-by-key

filter

filter

average

sum

Data Parallelism

Parallelism in a Stream Computation

map filter average-by-key

filter

filter

average

sum

Data Parallelism

Parallelism in a Stream Computation

map filter average-by-key

filter

filter

average

sum

Data Parallelism
Pipeline Parallelism

Parallelism in a Stream Computation

map filter average-by-key

filter

filter

average

sum

Data Parallelism
Pipeline Parallelism

Task Parallelism

Order & Data Parallelism

. . . , i3, i2, i1 → → . . . o3, o2, o1

Order & Data Parallelism

. . . , i3, i2, i1 → → . . . o3, o2, o1

Value of Output

in → → on

Order & Data Parallelism

. . . , i3, i2, i1 → → . . . o3, o2, o1

Value of Output

in → → on

Order of Outputs

. . . , o3, o2, o1

Ordering Semantics
If i ≺ i′�, when can i and i′� be processed out-of-order?

Ordering Semantics

(on, Sn) = operate(Sn−1, in)

If i ≺ i′�, when can i and i′� be processed out-of-order?

Ordering Semantics

(on, Sn) = operate(Sn−1, in)

Stateless

If i ≺ i′�, when can i and i′� be processed out-of-order?

Ordering Semantics

(on, Sn) = operate(Sn−1, in)

Stateless

If i ≺ i′�, when can i and i′� be processed out-of-order?

Always

Ordering Semantics

(on, Sn) = operate(Sn−1, in)

Stateless Stateful

If i ≺ i′�, when can i and i′� be processed out-of-order?

Always

Ordering Semantics

(on, Sn) = operate(Sn−1, in)

Stateless Stateful

If i ≺ i′�, when can i and i′� be processed out-of-order?

Always Never

Ordering Semantics

(on, Sn) = operate(Sn−1, in)

Stateless Stateful Partitionable 
Stateful

If i ≺ i′�, when can i and i′� be processed out-of-order?

Always Never

Ordering Semantics

(on, Sn) = operate(Sn−1, in)

Stateless Stateful Partitionable 
Stateful

If i ≺ i′�, when can i and i′� be processed out-of-order?

Always Never ℙ(i) ≠ ℙ(i′�)

Stream Dataflow Graph

1 2 3 4 5 6

Async Executable

2 3 4 5 61

Decouple operators by allowing inputs to be processed “asynchronously”

Async Executable

2 3 4 5 61

Decouple operators by allowing inputs to be processed “asynchronously”

Async Executable

2 3 4 5 61

Decouple operators by allowing inputs to be processed “asynchronously”

Independently Executable

Key Requirement

Each operator executable must individually
provide the ordering guarantee when

multiple workers are allotted

Key Requirement

Each operator executable must individually
provide the ordering guarantee when

multiple workers are allotted

Clear separation of concerns between correctness and optimisation

Scheduler

2 3 4 5 61

Scheduler

Scheduler

2 3 4 5 61

Scheduler

Scheduler

2 3 4 5 61

Scheduler

Scheduler

2 3 4 5 61

Scheduler

Scheduler

2 3 4 5 61

Scheduler

Scheduler

2 3 4 5 61

Scheduler

Scheduler

2 3 4 5 61

Scheduler

Outline

• Reordering Outputs

• Partitionable Stateful Operators

• Scheduling Runtime

• Evaluation

• Conclusion

Reordering Outputs

Reordering Outputs

• Each input is assigned a “sequence number” based on their arrival

• Concurrent workers are operating on inputs to produce outputs

• We want to reorder and send them downstream in the input arrival order

• Output � , even if produced earlier, can only be sent downstream after
all of � have been sent

oi+1
o1, o2, . . . , oi

Lock-Based Reordering

Lock-Based Reordering

Lock-Based Reordering

Lock-Based Reordering

Lock-Based Reordering

5 3 2

Lock-Based Reordering

5 3 2

1

Lock-Based Reordering

5 3 2

7

6

4 1

5 3 2

Lock-Based Reordering

7

6

4 1

• Each output already has a
designated location on the
buffer

• Decouple adding to buffer from
sending downstream

• If a worker is already sending
outputs downstream, delegate
the work to it and return to do
more useful work

Our Solution: Non-Blocking Reordering

Our Solution: Non-Blocking Reordering

Our Solution: Non-Blocking Reordering

Our Solution: Non-Blocking Reordering

Our Solution: Non-Blocking Reordering

Our Solution: Non-Blocking Reordering

Our Solution: Non-Blocking Reordering

Our Solution: Non-Blocking Reordering

Our Solution: Non-Blocking Reordering

5 3 2

Our Solution: Non-Blocking Reordering

5 3 2

1

Our Solution: Non-Blocking Reordering

5 3 2

1

467

Our Solution: Non-Blocking Reordering

5 3 2

1

467

Our Solution: Non-Blocking Reordering

5 3 2

1

467

Partitionable Stateful
Operators

Partitionable Stateful Operators
We have been working on group-by-aggregates for several decades,

what’s new?

Partitionable Stateful Operators
We have been working on group-by-aggregates for several decades,

what’s new?

Latency-Critical Ordering Requirement

Partitionable Stateful Operators
We have been working on group-by-aggregates for several decades,

what’s new?

If � , they can be processed out-of-order (or concurrently) only when
�

i ≺ i′�

ℙ(i) ≠ ℙ(i′�)

Latency-Critical Ordering Requirement

Shared Queue
• Each tuple has an associated partition

• All inputs are added into a single shared
linearizable concurrent queue

Shared Queue
• Each tuple has an associated partition

• All inputs are added into a single shared
linearizable concurrent queue

i2 : p1

i3 : p1

i4 : p2

i5 : p1

i6 : p3

i1 : p2

Shared Queue
• Each tuple has an associated partition

• All inputs are added into a single shared
linearizable concurrent queue

• Algorithm

1. Dequeue input

2. Lock partition

3. Operate on input

4. Unlock partition

i2 : p1

i3 : p1

i4 : p2

i5 : p1

i6 : p3

i1 : p2

Shared Queue
• Each tuple has an associated partition

• All inputs are added into a single shared
linearizable concurrent queue

• Algorithm

1. Dequeue input

2. Lock partition

3. Operate on input

4. Unlock partition

i2 : p1

i3 : p1

i4 : p2

i5 : p1

i6 : p3

Dequeue !i1

Shared Queue
• Each tuple has an associated partition

• All inputs are added into a single shared
linearizable concurrent queue

• Algorithm

1. Dequeue input

2. Lock partition

3. Operate on input

4. Unlock partition

i2 : p1

i3 : p1

i4 : p2

i5 : p1

i6 : p3

Dequeue !i1

Lock !p2

Shared Queue
• Each tuple has an associated partition

• All inputs are added into a single shared
linearizable concurrent queue

• Algorithm

1. Dequeue input

2. Lock partition

3. Operate on input

4. Unlock partition

i2 : p1

i3 : p1

i4 : p2

i5 : p1

i6 : p3

Dequeue !i1

Lock !p2

Operate on !i1

Shared Queue
• Each tuple has an associated partition

• All inputs are added into a single shared
linearizable concurrent queue

• Algorithm

1. Dequeue input

2. Lock partition

3. Operate on input

4. Unlock partition

i2 : p1

i3 : p1

i4 : p2

i5 : p1

i6 : p3

Dequeue !i1

Lock !p2

Operate on !i1

Unlock !p2

Shared Queue
• Each tuple has an associated partition

• All inputs are added into a single shared
linearizable concurrent queue

• Algorithm

1. Dequeue input

2. Lock partition

3. Operate on input

4. Unlock partition

i2 : p1

i3 : p1

i4 : p2

i5 : p1

i6 : p3

Shared Queue
• Each tuple has an associated partition

• All inputs are added into a single shared
linearizable concurrent queue

• Algorithm

1. Dequeue input

2. Lock partition

3. Operate on input

4. Unlock partition

i4 : p2

i5 : p1

i6 : p3

Dequeue !i2 Dequeue !i3

Shared Queue
• Each tuple has an associated partition

• All inputs are added into a single shared
linearizable concurrent queue

• Algorithm

1. Dequeue input

2. Lock partition

3. Operate on input

4. Unlock partition

i4 : p2

i5 : p1

i6 : p3

Dequeue !i2 Dequeue !i3

Lock !p1Lock !p1

Shared Queue
• Each tuple has an associated partition

• All inputs are added into a single shared
linearizable concurrent queue

• Algorithm

1. Dequeue input

2. Lock partition

3. Operate on input

4. Unlock partition

i4 : p2

i5 : p1

i6 : p3

Dequeue !i2 Dequeue !i3

Lock !p1

Operate on !i3

Unlock !p1

Operate on !i2

Lock !p1

Partitioned Queues
• Consider each partition as a stateful

operator with its own queue

• At most one worker can process a
partition

• Most commonly used strategy in all
stream processing engines

• Unnecessary blocking of outputs in
the reordering buffer

Partitioned Queues
• Consider each partition as a stateful

operator with its own queue

• At most one worker can process a
partition

• Most commonly used strategy in all
stream processing engines

• Unnecessary blocking of outputs in
the reordering buffer

i3 : p1
i1 : p1

i7 : p1
i5 : p2
i2 : p2

i6 : p3
i4 : p3

Partitioned Queues
• Consider each partition as a stateful

operator with its own queue

• At most one worker can process a
partition

• Most commonly used strategy in all
stream processing engines

• Unnecessary blocking of outputs in
the reordering buffer

i3 : p1
i1 : p1

i7 : p1
i5 : p2
i2 : p2

i6 : p3
i4 : p3

Partitioned Queues
• Consider each partition as a stateful

operator with its own queue

• At most one worker can process a
partition

• Most commonly used strategy in all
stream processing engines

• Unnecessary blocking of outputs in
the reordering buffer

i5 : p2
i2 : p2

o1o3o4o6o7

Partitioned Queues
• Consider each partition as a stateful

operator with its own queue

• At most one worker can process a
partition

• Most commonly used strategy in all
stream processing engines

• Unnecessary blocking of outputs in
the reordering buffer

i5 : p2
i2 : p2

o1o3o4o6o7 o3o4o6o7

Solutions
Shared Queue Partitioned Queues

• Almost ordered processing

• Partition guarantee violation

• Partition guarantee

• Output blocking due to out-of-
order processing

Our Solution: Hybrid Strategy
Hybrid Strategy

• Master Queue: Contains only partition ids in the order of arrival

• Partition Queues:

• One for each partition

• Each queue contains inputs belonging to a single partition

• Non-blocking strategy in the ordered setting!

Our Solution: Hybrid Queue

Master Queue Partition Queues

Our Solution: Hybrid Queue

i1p2

Master Queue Partition Queues

Our Solution: Hybrid Queue

i2 i1p2

p1

Master Queue Partition Queues

Our Solution: Hybrid Queue

i3
i2 i1p2

p1

p1

Master Queue Partition Queues

Our Solution: Hybrid Queue

i3
i2 i1 i4p2

p1

p1

p3

Master Queue Partition Queues

Our Solution: Hybrid Queue

i3
i2

i5
i1 i4p2

p1

p1

p3

p2

Master Queue Partition Queues

Our Solution: Hybrid Queue

i3
i2

i5
i1

i6
i4p2

p1

p1

p3

p2

p3

Master Queue Partition Queues

Our Solution: Hybrid Queue

i3
i2

i7
i5
i1

i6
i4p2

p1

p1

p3

p2

p3

p1

Master Queue Partition Queues

Our Solution: Hybrid Queue

0 0 0

Counts
i3
i2

i7
i5
i1

i6
i4p2

p1

p1

p3

p2

p3

p1

Our Solution: Hybrid Queue

0 0 0

Counts
i3
i2

i7
i5
i1

i6
i4

p1

p1

p3

p2

p3

p1

Dequeue !p2

Our Solution: Hybrid Queue

0 0 0

Counts
i3
i2

i7
i5
i1

i6
i4

p1

p1

p3

p2

p3

p1

Dequeue !p2

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p2] : 0 → 1

1

Our Solution: Hybrid Queue

0 0 0

Counts
i3
i7

i5
i1

i6
i4

p1

p1

p3

p2

p3

p1

Dequeue !p2

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p2] : 0 → 1

1

Dequeue !i1

Our Solution: Hybrid Queue

0 0 0

Counts
i3
i7

i5
i1

i6
i4

p1

p1

p3

p2

p3

p1

Dequeue !p2

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p2] : 0 → 1

1

Dequeue !i1
Operate on !i1

Our Solution: Hybrid Queue

0 0 0

Counts
i3
i7

i5
i1

i6
i4

p1

p1

p3

p2

p3

p1

Dequeue !p2

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p2] : 0 → 1

1

Dequeue !i1
Operate on !i1

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p2] : 1 → 0

0

Our Solution: Hybrid Queue

0 0 0

Counts
i3
i2

i7
i5 i6

i4
p1

p1

p3

p2

p3

p1

Our Solution: Hybrid Queue

0 0 0

Counts
i3
i2

i7
i5 i6

i4

p3

p2

p3

p1

Dequeue !p1 Dequeue !p1

Our Solution: Hybrid Queue

0 0 0

Counts
i3
i2

i7
i5 i6

i4

p3

p2

p3

p1

Dequeue !p1 Dequeue !p1

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 0 → 1 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 1 → 2 2

Our Solution: Hybrid Queue

0 0 0

Counts
i3
i7

i5 i6
i4

p3

p2

p3

p1

Dequeue !p1 Dequeue !p1

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 0 → 1 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 1 → 2

Dequeue !i2

2

Our Solution: Hybrid Queue

0 0 0

Counts
i3
i7

i5 i6
i4

p2

p3

p1

Dequeue !p1 Dequeue !p1

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 0 → 1 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 1 → 2

Dequeue !i2 Dequeue !p3

2

Our Solution: Hybrid Queue

0 0 0

Counts
i3
i7

i5 i6
i4

p2

p3

p1

1

Dequeue !p1 Dequeue !p1

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 0 → 1 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 1 → 2

Dequeue !i2
Operate on !i2

Dequeue !p3

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p3] : 0 → 1

2

Our Solution: Hybrid Queue

0 0 0

Counts
i3
i7

i5 i6
i4

p2

p3

p1

1

Dequeue !p1 Dequeue !p1

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 0 → 1 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 1 → 2

Dequeue !i2
Operate on !i2

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 2 → 1

Dequeue !p3

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p3] : 0 → 1

21

Our Solution: Hybrid Queue

0 0 0

Counts
i3
i7

i5 i6

p2

p3

p1

1

Dequeue !p1 Dequeue !p1

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 0 → 1 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 1 → 2

Dequeue !i2
Operate on !i2

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 2 → 1

Dequeue !p3

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p3] : 0 → 1

Dequeue !i4

21

Our Solution: Hybrid Queue

0 0 0

Counts

i7
i5 i6

p2

p3

p1

1

Dequeue !p1 Dequeue !p1

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 0 → 1 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 1 → 2

Dequeue !i2
Operate on !i2

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 2 → 1

Dequeue !p3

Dequeue !i3

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p3] : 0 → 1

Dequeue !i4

21

Our Solution: Hybrid Queue

0 0 0

Counts

i7
i5 i6

p2

p3

p1

1

Dequeue !p1 Dequeue !p1

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 0 → 1 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 1 → 2

Dequeue !i2
Operate on !i2

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 2 → 1

Dequeue !p3

Dequeue !i3

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p3] : 0 → 1

Dequeue !i4
Operate on !i4

21

Our Solution: Hybrid Queue

0 0 0

Counts

i7
i5 i6

p2

p3

p1

10

Dequeue !p1 Dequeue !p1

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 0 → 1 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 1 → 2

Dequeue !i2
Operate on !i2

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 2 → 1

Dequeue !p3

Dequeue !i3
Operate on !i3

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p3] : 0 → 1

Dequeue !i4
Operate on !i4

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p3] : 1 → 0

21

Our Solution: Hybrid Queue

0 0 0

Counts

i7
i5 i6

p2

p3

p1

10

Dequeue !p1 Dequeue !p1

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 0 → 1 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 1 → 2

Dequeue !i2
Operate on !i2

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 2 → 1

Dequeue !p3

Dequeue !i3
Operate on !i3

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 1 → 0

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p3] : 0 → 1

Dequeue !i4
Operate on !i4

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p3] : 1 → 0

210

Our Solution: Hybrid Queue

0 0 0

Counts

i7
i5 i6

p3

p1

10

Dequeue !p1 Dequeue !p1

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 0 → 1 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 1 → 2

Dequeue !i2
Operate on !i2

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 2 → 1

Dequeue !p3

Dequeue !i3
Operate on !i3

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 1 → 0

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p3] : 0 → 1

Dequeue !i4
Operate on !i4

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p3] : 1 → 0

Dequeue !p2

210

Our Solution: Hybrid Queue

0 0 0

Counts

i7
i5 i6

p1

10

Dequeue !p1 Dequeue !p1

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 0 → 1 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 1 → 2

Dequeue !i2
Operate on !i2

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 2 → 1

Dequeue !p3

Dequeue !i3
Operate on !i3

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p1] : 1 → 0

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p3] : 0 → 1

Dequeue !i4
Operate on !i4

 ! 𝚌𝚘𝚞𝚗𝚝𝚜[p3] : 1 → 0

Dequeue !p3

Dequeue !p2

210

Reordering Buffer

Operator Implementations

Stateless Stateful Partitionable 
Stateful

MPMC Queue SPSC Queue MPMC
Master Queue

SPSC Partition
Queues

Reordering Buffer

Scheduling Runtime

Dynamic Scheduling

Monitor the state of the pipeline and
operator characteristics to answer

Which operator should a worker next work on?

Parameters of Interest
Input queue size

Output queue size

Average selectivity i.e. Number of outputs per input

Operator cost i.e. Time taken to process each input

Number of workers allotted currently

Maximum allowed number of workers

Ii

Oi
si

ci

wi

Mi

4 Heuristics

Queue-Size Throttling
(QST)

Last-In-Pipeline
(LIP)

Estimated Time  
(ET)

Current Throughput
(CT)

Queue-Size Throttling (QST)
• Apply pressure from ingress towards egress

• Focus on one operator at a time

• Each operator has an upper bound on output
queue size

• Normalize for selectivity

• Pick earliest operator in the pipeline with
output queue size less than its threshold

csi =
i

∏
k=1

si

Queue-Size Throttling (QST)
• Apply pressure from ingress towards egress

• Focus on one operator at a time

• Each operator has an upper bound on output
queue size

• Normalize for selectivity

• Pick earliest operator in the pipeline with
output queue size less than its threshold

csi =
i

∏
k=1

si

Ti =
C * csi

∑n
i=1 csi

Queue-Size Throttling (QST)

1 2 3 4 5

Queue-Size Throttling (QST)

1 2 3 4 5

x 1

Queue-Size Throttling (QST)

1 2 3 4 5

x 1

Queue-Size Throttling (QST)

1 2 3 4 5

x 2

Queue-Size Throttling (QST)

1 2 3 4 5

x 2

Queue-Size Throttling (QST)

1 2 3 4 5

x 1x 1

Queue-Size Throttling (QST)

1 2 3 4 5

x 1x 1

Queue-Size Throttling (QST)

1 2 3 4 5

x 2

Queue-Size Throttling (QST)

1 2 3 4 5

x 2

Queue-Size Throttling (QST)

1 2 3 4 5

x 2 x 1

Queue-Size Throttling (QST)

1 2 3 4 5

x 1 x 1

Queue-Size Throttling (QST)

1 2 3 4 5

x 1 x 1

Last In Pipeline (LIP)
• Complementary to QST

• Provide suction to pull tuples from ingress towards egress

• Prioritizes operators later in the pipeline

• Operator is “schedulable” if it has

• Less than maximum allowed workers assigned

• Minimum input queue size

Last In Pipeline (LIP)

1 2 3 4 5

Last In Pipeline (LIP)

1 2 3 4 5

x 1

Last In Pipeline (LIP)

1 2 3 4 5

x 1

Last In Pipeline (LIP)

1 2 3 4 5

x 1 x 1

Last In Pipeline (LIP)

1 2 3 4 5

x 1 x 1

Last In Pipeline (LIP)

1 2 3 4 5

x 1 x 1

Last In Pipeline (LIP)

1 2 3 4 5

x 1 x 1

Last In Pipeline (LIP)

1 2 3 4 5

x 1 x 1

Estimated Time (ET)
• Priority-based: Compute a priority score

for each operator and assign worker to the
one with highest score

• Priority score is estimated time to process
the current input queue to completion if an
additional worker is assigned

• Intuition: Operator that will take more time
to complete needs additional worker time 

pi =
Ii * ci

wi + 1

Estimated Time (ET)

1 2 3 4 5

pi =
Ii * ci

wi + 1

Estimated Time (ET)

1 2 3 4 5

p1 = 40μs p2 = 10μs p5 = 100μsp4 = 70μsp3 = 15μs

pi =
Ii * ci

wi + 1

Estimated Time (ET)

1 2 3 4 5

p1 = 40μs p2 = 10μs p4 = 70μsp3 = 15μs

x 1

p5 = 50μs

pi =
Ii * ci

wi + 1

Estimated Time (ET)

1 2 3 4 5

p1 = 40μs p2 = 10μs p3 = 15μs

x 1

p5 = 50μs

x 1

p4 = 35μs

pi =
Ii * ci

wi + 1

Estimated Time (ET)

1 2 3 4 5

p1 = 40μs p2 = 10μs p3 = 15μs

x 1

p4 = 35μs

x 2

p5 = 33.3μs

pi =
Ii * ci

wi + 1

Current Throughput (CT)

• Schedule the operator with lowest throughput as
it is likely to be bottleneck in the pipeline

• Normalize for selectivity

• Divide time into windows of size w, compute
“effective” number of tuples processed by
operator in w

• Choose operator with smallest �nw
i

nw
i =

Tw
i + (wi × s)
ci × csi−1

Current Throughput (CT)

1 2 3 4 5

x 1x 1x 1

nw
i =

Tw
i + (wi × s)
ci × csi−1

Current Throughput (CT)

1 2 3 4 5

x 1x 1x 1

nw
i =

Tw
i + (wi × s)
ci × csi−1

nw
1 = 2M nw

2 = 0.33M nw
3 = 5M nw

4 = 0.1M nw
5 = 10M

Current Throughput (CT)

1 2 3 4 5

x 1x 1

nw
i =

Tw
i + (wi × s)
ci × csi−1

nw
1 = 2M nw

2 = 0.33M nw
3 = 5M nw

5 = 10M

x 1

nw
4 = 1M

Current Throughput (CT)

1 2 3 4 5

x 1

nw
i =

Tw
i + (wi × s)
ci × csi−1

nw
1 = 2M nw

3 = 5M nw
5 = 10M

x 1

nw
4 = 1M

x 1

nw
2 = 0.75M

Evaluation

Evaluation

• Intel Xeon E5 Family 2698B v3 series

• Windows Server 2012 R2 Datacenter

• 16 Physical Cores

• Cache sizes: 32KB, 256KB & 40MB

• Steady-state throughput, latency

• TPCx-BB (Big Bench) Benchmark

• Modern Big Data Benchmark

• Q1-4, Q15 are streaming queries

• Eg. “Find top 30 products that
are viewed together online”

• Micro-benchmarks

Experimental Setup Workloads

Scheduling - Throughput

Scheduling - Latency

Scheduling - Analysis
• Even when total worker time distribution is same, the “throughput” is different for

different heuristics!

• Heuristics that distribute workers across the operators

• Establish a continuous pipelined flow

• Yields better throughput and latency

• Heuristics that focus on a single operator at a time

• Prioritizes data parallelism over pipeline parallelism

• Suffer from overheads of exploiting data parallelism in ordered setting

Partitioned Stateful Schemes
Load Imbalance Across Partitions

Hybrid strategy can afford finer partitions and hence better load balance!

Partitioned Stateful Schemes
Latency for different operator costs

Partitioned scheme blocks outputs, increasing latency!

Output Reordering Schemes
Lightweight Operators High Selectivity Operators

Non-blocking reordering scheme prevents unnecessary worker blocking

Conclusion

Conclusion
• Framework for parallelizing ordered stream computations on shared-

memory multicores

• Implementation of data-parallel operators in the ordered setting

• Reordering outputs without worker blocking

• Processing partitioned stateful operators in almost arrival order

• Proposed heuristics for dynamically scheduling stream operators and
compared them empirically

Questions?

