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Classification of text streams: an example

News articles classification

>  Multi-classification problem
> Automated news aggregation
> Event-based decisions
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Classification of text streams: requirements

Production-ready solution

Scalability

Low latency
Reproducibility
Fault tolerance
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Existing tools: python libraries, batch systems

>>> from sklearn.linear_model 1import SGDClassifier

>>> text_clf = Pipeline([

('vect', CountVectorizer()),

('"tfidf', TfidfTransformer()),

('clf', SGDClassifier(loss="hinge', penalty="12",
alpha=1e-3, random_state=47,
max_iter=5, tol=None)),

D

>>> text_clf.fit(twenty_train.data, twenty_train.target)
Pipeline(. . .) MAHOUT

>>> predicted = text_clf.predict(docs_test)
>>> np.mean(predicted == twenty_test.target)
0.9101...

Not scalable High latency



Text classifier on top
of distributed stream
processing




Existing tools: distributed stream processing

Apache SAMOA

Scalaple Advanced Massive Online Analysis
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Stream processing: building logical graph

> Bag-of-words model
> TF-IDF features

Input Text TF TF-IDF of
text Features TE-IDE unlabelled text

Labelled

Text text

operation classifier
IDF
Features
Text
words IDF

operation



Stream processing: physical graph
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Text classification on top of distributed stream
processing system

Perfect solution? Let’s try!

> Apache Flink

> Multinomial logistic regression (less than 1% regret in comparison with
SVM)

> lenta.ru dataset: 200.000 articles, 90 classes
>  Amazon ECZ2 small instances
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Pitfall #1: races in dataflow
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Races in dataflow: experiments

> 10 Independent launches
> Results of individual points can be irreproducible

Cluster size % of varied labels(meanztstd) Accuracy % (77.3)
2 0.9x£0.2 77.3+£0.2
4 1.7+£0.4 77.3+£0.2

3 1.9+0.5 77.3+0.2
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Races in dataflow: experiment explanation

> Differently labeled points are near discriminative surface
> Dependency from classifier accuracy requires further investigation
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Races In dataflow: straightforward resolution
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Races in dataflow: overview

> Can affect the result of individual documents, but not accuracy
> Should be considered if reproducibility in terms of individual elements matters
> Straightforward solution has slight latency overhead
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Pitfall #2: the choice of delivery guarantee

Delivery guarantees
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At-least-once: biased distribution
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At-least-once: biased threshold

> 5000 articles (window) e | e }
> Looking for “popular” topics Qe
> 2 Amazon EC2 small instances ' replay '

12

Politics
B Sport
B Animals
10

Ground Truth No failures Failure

Top labels, %

20



Overhead on exactly once: causes

> Latency depends on snapshotting period in non-deterministic systems
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Overhead on exactly once: experiment

> Apache Flink
> 1 and 2 seconds period between snapshots
> 2 Amazon EC2 small instances

At least once 50 %-ile
. (1 sec checkpointing period) B 75 %-ile
B 90 %-ile
_ Exactly once B 99 %-ile
(1 sec period)
(2 sec period)

500 1000 1500 2000 2500
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Fault tolerance: overview

> Falilures within at-least-once guarantee can significantly influence results

> Overhead on exactly-once is high in state-of-the-art stream processing
systems

Latency Fault tolerance
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Promising directions

System Exactly-once Determinism Latency
Storm — — low (< 500 ms)
Heron — — low
Samza — — low
Apache Spark + + high
Flink + — high*
MillWheel + + NA
FlameStream + + low

* - with enabled exactly-once

) Zachellas, N., Kalogeraki, V., Nikolakopoulos, Y., Gulisano, V., Papatriantafilou, M., & Tsigas, P. (2017,
June). Maximizing determinism in stream processing under latency constraints. In Proceedings of the
11th ACM International Conference on Distributed and Event-based Systems (pp. 112-123). ACM.

) Kuralenok, |. E., Trofimov, A., Marshalkin, N., & Novikov, B. (2018, September). Deterministic Model for
Distributed Speculative Stream Processing. In European Conference on Advances in Databases and

Information Systems (pp. 233-246). Springer, Cham. o






Pitfall #3: on-the-fly model updates

> Data is rapidly changing
> Two types of elements: pre-labeled and raw
> Raw elements should update ML model
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On-the-fly model updates: reproducibility

> Training process may be time-consuming
> Consecutive training and prediction -> |latency spikes
> Online learning!
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On-the-fly model updates: future work

> Straightforward solution leads to latency spikes or irreproducibile results
>  Only online learning algorithms are suitable
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Conclusion

Moving to distributed streaming environment is complex
Migration of even simple pipeline can be a difficult problem
There are no automatic tools for migration or for finding issues

There are several approaches which can potentially fix the problems:
deterministic stream processing and online learning algorithms
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