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Classification of text streams: an example
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News articles classification 

› Multi-classification problem 
› Automated news aggregation 
› Event-based decisions
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Classification of text streams: requirements
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Production-ready solution  

› Scalability 
› Low latency 
› Reproducibility 
› Fault tolerance



Existing tools: python libraries, batch systems
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>>> from sklearn.linear_model import SGDClassifier
>>> text_clf = Pipeline([
...     ('vect', CountVectorizer()),
...     ('tfidf', TfidfTransformer()),
...     ('clf', SGDClassifier(loss='hinge', penalty='l2',
...                           alpha=1e-3, random_state=42,
...                           max_iter=5, tol=None)),
... ])

>>> text_clf.fit(twenty_train.data, twenty_train.target)  
Pipeline(...)
>>> predicted = text_clf.predict(docs_test)
>>> np.mean(predicted == twenty_test.target)            
0.9101...

Not scalable SHigh latency



Text classifier on top 
of distributed stream 
processing



Existing tools: distributed stream processing
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Stream processing: building logical graph
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› Bag-of-words model 
› TF-IDF features
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Stream processing: physical graph
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Text classification on top of distributed stream 
processing system
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Perfect solution? Let’s try!  

› Apache Flink 
› Multinomial logistic regression (less than 1% regret in comparison with 

SVM) 
› lenta.ru dataset: 200.000 articles, 90 classes 
› Amazon EC2 small instances

http://lenta.ru


Reproducibility



Pitfall #1: races in dataflow
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Races in dataflow: experiments
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Cluster size % of varied labels(mean±std) Accuracy % (77.3)

2 0.9 ± 0.2 77.3 ± 0.2

4 1.7 ± 0.4 77.3 ± 0.2

8 1.9 ± 0.5 77.3 ± 0.2

› 10 independent launches 
› Results of individual points can be irreproducible



Races in dataflow: experiment explanation
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› Differently labeled points are near discriminative surface 
› Dependency from classifier accuracy requires further investigation 



Races in dataflow: straightforward resolution
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› Set order on elements 
› Buffer until punctuation (watermark) arrives 
› Sort according to the order
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Races in dataflow: overview

!16

› Can affect the result of individual documents, but not accuracy 
› Should be considered if reproducibility in terms of individual elements matters 
› Straightforward solution has slight latency overhead



Fault tolerance



 At-least-once

Pitfall #2: the choice of delivery guarantee

Delivery guarantees

?Exactly-once                         

!18



At-least-once: biased distribution
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› 4000 articles (window) 
› Sport and science topics 
› 2 Amazon EC2 small instances
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At-least-once: biased threshold
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› 5000 articles (window) 
› Looking for “popular” topics 
› 2 Amazon EC2 small instances
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Overhead on exactly once: causes
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› Latency depends on snapshotting period in non-deterministic systems
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Overhead on exactly once: experiment
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› Apache Flink 
› 1 and 2 seconds period between snapshots  
› 2 Amazon EC2 small instances 
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Fault tolerance: overview
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› Failures within at-least-once guarantee can significantly influence results 
› Overhead on exactly-once is high in state-of-the-art stream processing 

systems 

Latency Fault tolerance



Promising directions
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› Zacheilas, N., Kalogeraki, V., Nikolakopoulos, Y., Gulisano, V., Papatriantafilou, M., & Tsigas, P. (2017, 
June). Maximizing determinism in stream processing under latency constraints. In Proceedings of the 
11th ACM International Conference on Distributed and Event-based Systems (pp. 112-123). ACM. 

› Kuralenok, I. E., Trofimov, A., Marshalkin, N., & Novikov, B. (2018, September). Deterministic Model for 
Distributed Speculative Stream Processing. In European Conference on Advances in Databases and 
Information Systems (pp. 233-246). Springer, Cham.

System Exactly-once Determinism Latency
Storm – – low (< 500 ms)
Heron – – low
Samza – – low
Apache Spark + + high
Flink + – high*
MillWheel + + NA

FlameStream + + low

* - with enabled exactly-once



On-the-fly model 
updates



Pitfall #3: on-the-fly model updates
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› Data is rapidly changing 
› Two types of elements: pre-labeled and raw  
› Raw elements should update ML model 
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On-the-fly model updates: reproducibility
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› Training process may be time-consuming  
› Consecutive training and prediction -> latency spikes  
› Online learning! 
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On-the-fly model updates: future work
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› Straightforward solution leads to latency spikes or irreproducibile results 
› Only online learning algorithms are suitable  
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Conclusion



Conclusion
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› Moving to distributed streaming environment is complex 
› Migration of even simple pipeline can be a difficult problem 
› There are no automatic tools for migration or for finding issues 
› There are several approaches which can potentially fix the problems: 

deterministic stream processing and online learning algorithms 


