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WHY CONCEPT DRIFT DETECTION?

From industrial production environments to smart cities, from 
network traffic classification to text mining 
­ data are collected in real-time 
­ the nature of data changes over time, due to the evolution of the phenomena

Predictive model performance usually degrades over time
­ New incoming data can widely differ from the data distribution on which the 

model was trained
­ Not all possible classes (labels) are effectively known at training time
­ Real time predictions performed on new unseen data can be misleading or 

completely erroneous
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STATE-OF-ART LIMITATIONS

Many techniques aim to be robust to concept drift
­ They do not really detect concept drift and do not highlight drifting data

They require ground truth labels for drifting data to perform correctly
­ They are applicable only in certain domains

They do not manage concept drift automatically and in real time
­ They do not trigger predictive model retraining automatically only when necessary
­ They are not thought to be scalable

Some approaches are not general purpose
­ They are tailored to a specific use case
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AUTOMATED CONCEPT DRIFT MANAGEMENT

Automatic triggering of the predictive model retraining only when necessary

Unsupervised approach
­ It does not required the ground-truth labels for the newly classified samples

Explainable
­ It produces description of the changes in the class-label data distributions motivating the model 

update

General purpose
­ Not tailored to a specific use case or application domain, nor to a specific data type

Real-time estimation
­ Horizontally scalable for Big Data contexts and applicable in real-time environments
­ Implemented on top of Apache Spark
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MODEL DEGRADATION SELF-EVALUATION
METHODOLOGY

Given a pre-trained predictive model
­ Its knowledge is based on the information contained in the 

labeled train samples 

We consider model performance degradation 
between
­ Data used to train the classification model
­ New incoming unlabeled data

Algorithm main idea 
­ given a dataset of points divided in classes
­ Evaluate the intra-class cohesion and inter-class separation
­ Before and After the prediction of unseen data 
­ Compute the degradation of the predictive model.
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MODEL DEGRADATION SELF-EVALUATION
METHODOLOGY

The self-assessment algorithm exploits unsupervised quality metrics to evaluate the 
predictive model degradation

The algorithm exploits the scalable Descriptor Silhouette index (DS) 
­ Other unsupervised metrics can be used

The Model Degradation is obtained computing the MAAPE error between
­ Descriptor Silhouette curve computed at the end of the model training with training data at time 𝑡"
­ Descriptor Silhouette curve computed with training data and new labeled data until time 𝑡

Degradation is computed separately for each class
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METHODOLOGY
DESCRIPTOR SILHOUETTE INDEX1

The geometrical shape of a group of points is described with 
a low number of Descriptors

The DESCRIPTOR SILHOUETTE1 applies the same definition of 
Silhouette 
­ between all the points in the dataset and the descriptors
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Descriptors
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METHODOLOGY
MODEL DEGRADATION

𝐷𝐸𝐺 𝑐, 𝑡 →Model Degradation for class 𝑐 at time 𝑡

𝑀𝐴𝐴𝑃𝐸(𝑎, 𝑏) → Mean Absolute Arctangent Percentage Error

𝑆𝑖𝑙34 → Descriptor Silhouette at training time

𝑆𝑖𝑙3 → Descriptor Silhouette at training time + 
labeled data until time 𝑡

56
5 → Ratio between  #points belonging to class 𝑐

and total number of points

𝛼 → Coefficient that is positive or negative 
according to the comparisons of average 
silhouettes at time 𝑡" and 𝑡
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EXPERIMENTAL GOALS

Show the performances of 
the Descriptor Silhouette
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Prove the effectiveness of 
model degradation self-

evaluation over time.



EXPERIMENTAL CONTEXT 1
MODEL DEGRADATION SELF-EVALUATION

2datasets 

Dataset D1
­ Synthetic dataset created with the scikit-learn Python library 
­ 800,000 records
­ 4 normally distributed classes (200,000 for each class) 
­ 10 features 

Dataset D2
­ Real-world dataset containing Wikipedia articles
­ 3,000 records
­ 3 classes: food-drink, literature and mathematics – 1000 records for each class 
­ 100 features obtained through Doc2Vec document embedding
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EXPERIMENTAL CONTEXT 1
MODEL DEGRADATION SELF-EVALUATION

Random Forest classifier has been used as predictive model. 
­3-fold cross-validation
­average f-measure of the predictive model
­ 0.964 for dataset D1
­ 0.934 for dataset D2. 

The training set consists of a stratified sample over classes 0 and 1 
with 60% of records in each class. 
The remaining part of the dataset is used as test set to assess 
model degradation
­40% of classes 0 and 1 and whole class 2
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EXPERIMENTAL RESULTS
MODEL DEGRADATION SELF-EVALUATION - 1

Dataset D1

Training on 60% of
­ Classes 0 and 1

Test degradation on
­ 40% classes 0 and 1
­ Whole class 2

Class 0/1 (Known)
Class 2 (Unknown)

New incoming data

0% 0% 0% 0% 9% 16.7% 23.1% 28.6% 33.3%

0 0 0 0 40K 80K 120K 160K 200K

Percentage of drifting records

Number of drifting records
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EXPERIMENTAL RESULTS
MODEL DEGRADATION SELF-EVALUATION - 1

Dataset D1. Baseline DS curve at training time, and degraded DS curve at time t9 

Degradation with class 2 
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EXPERIMENTAL RESULTS
MODEL DEGRADATION SELF-EVALUATION - 2

Dataset D2 - Wikipedia

Training on 60% of
­ Class 0 (food-drink)
­ Class 1 (literature)

Test degradation on
­ 40% classes 0 and 1 
­ Class 2 (mathematics)

Class 0/1 (Known)
Class 2 (Unknown)

New incoming data

0% 0% 0% 0% 9% 16.7% 23.1% 28.6%

0 0 0 0 200 400 600 800

Percentage of drifting records

Number of drifting records
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EXPERIMENTAL RESULTS
MODEL DEGRADATION SELF-EVALUATION - 2

Dataset D2. Baseline DS curve at training time, and degraded DS curve at time t8

Degradation with class 2 (mathematics)



EXPERIMENTAL CONTEXT 2
DESCRIPTOR SILHOUETTE PERFORMANCE

Synthetic dataset
­ 10M records
­ 10 features 
­ 3 classes 
­ Normal distribution

200 descriptors per class

6 sub-datasets
­ 10k, 50K, 100K, 500K, 1M, 10M

Single node configuration 
­ Intel i7 8-core server 
­ 32GB of memory 

Multi node configuration
­ 50 virtual nodes
­ 2 cores
­ 512MB of memory
­ running on top of the BigData@Polito cluster 

(https://smartdata.polito.it/computing-facilities/) 
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EXPERIMENTAL RESULTS
DESCRIPTOR SILHOUETTE PERFORMANCE – SINGLE NODE
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Single node computational time



EXPERIMENTAL RESULTS
DESCRIPTOR SILHOUETTE PERFORMANCE – MULTI NODE
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SpeedupMulti node computational time

When data is distributed in 500 partitions over the 50 nodes, the 
Descriptor Silhouette index requires:
­ 25 mins for 10M records
­ 3 mins for 1M records



CONCLUSIONS & FUTURE WORK

Automated concept drift management with a new estimation strategy for model 
degradation 
­ In soft real-time
­ Exploiting an unsupervised strategy
­ General purpose

Promising experimental results on two datasets 

Future directions include
1. alternative unsupervised metrics besides the Silhouette index
2. improvement of self-evaluation triggering mechanism, currently set as a percentage of new data
3. further experiments to assess the generality and the real-time performance
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